王超
论文著作
[1] Wang, X., Wang, C., Fan, X., Sun, L., Sang, C., Wang, X., Jiang, P., Fang, Y., Bai, E., 2024. Mineral composition controls the stabilization of microbially derived carbon and nitrogen in soils: Insights from an isotope tracing model. Global Change Biology 30, e17156.
[2] Sun, L., Qu, L., Moorhead, D.L., Cui, Y., Wanek, W., Li, S., Sang, C., Wang, C., 2024. Interpreting the differences in microbial carbon and nitrogen use efficiencies estimated by 18O labeling and ecoenzyme stoichiometry. Geoderma 444, 116856.
[3] Qu, L., Wang, C., Manzoni, S., Dacal, M., Maestre, F.T., Bai, E., 2024. Stronger compensatory thermal adaptation of soil microbial respiration with higher substrate availability. The ISME Journal 18, wrae025.
[4] Lyu, M., Chen, S., Zhang, Q., Yang, Z., Xie, J., Wang, C., Wang, X., Liu, X., Xiong, D., Xu, C., Lin, W., Chen, G., Chen, Y., Yang, Y., 2024. Rapid positive response of young trees growth to warming reverses nitrogen loss from subtropical soil. Functional Ecology 38, 1222–1235.
[5] Chen, L., Zhou, G., Feng, B., Wang, C., Luo, Y., Li, F., Shen, C., Ma, D., Zhang, C., Zhang, J., 2024. Saline–alkali land reclamation boosts topsoil carbon storage by preferentially accumulating plant-derived carbon. Science Bulletin, In press
[6] Wang C* ,Wang X,Zhang Y,Morrissey E,Liu Y,Sun LF,Qu LR,Sang CP,Zhang H,Li GC*,Zhang LL,Fang YT. Integrating microbial community properties,biomass and necromass to predict cropland soil organic carbon. 2023. ISME Communications,3,86. Doi: 10.1038/s43705-023-00300-1.
[7] Sun LF*,Moorhead DL,Cui YX*,Wanek W,Li SL,Wang C. Exogenous nitrogen input skews estimates of microbial nitrogen use efficiency by ecoenzymatic stoichiometry. 2023. Ecological Process,12,46. Doi: 10.1186/s13717-023-00457-6.
[8] Walkup J,Dang C,Mau RL,Hayer M,Schwartz E,Stone BW,Hofmockel KS,Koch BJ,Purcell AM,Pett-Ridge J,Wang C,Hungate BA,Morrissey EM*. 2023. The predictive power of phylogeny on growth rates in soil bacterial communities. ISME Communications,DOI: 10.1038/s43705-023-00281-1.
[9] He P,Ling N*,L XT,Zhang HY,Wang C,Wang RZ,Wei CZ,Yao J,Wang XB*,Han XG,Nan ZB. 2023. Contributions of abundant and rare bacteria to soil multifunctionality depend on aridity and elevation. Applied Soil Ecology,DOI: 10.1016/j.apsoil.2023.104881.
[10] Yu HM,Duan YH,Mulder J,Dörsch P,Zhu WX,Ri X,Huang K,Zheng ZT,Kang RH,Wang C,Quan Z,Zhu FF,Liu DW,Peng SS,Han SJ,Zhang YJ*,Fang YT*. 2023. Universal temperature sensitivity of denitrification nitrogen losses in forest soils. Nature Climate Change,DOI: 10.1038/s41558-023-01708-2.
[11] Cao YW,Liu XM,Wang C,Bai E,Wu NP*. 2022. Rare earth element geochemistry in soils along arid and semiarid grasslands in northern China. Ecological Processes,11,1-14. DOI: 10.1186/s13717-022-00375-z.
[12] Wang ZT,Yang JY,Wang C,Bai E*. 2022. Oxygen gas derived oxygen does not affect the accuracy of 18O-labelled water approach for microbial carbon use efficiency. Soil Biology and Biochemistry,168,108469.
[13] Wang C,Morrissey EM*,Mau RL,Hayer M,Piñeiro JMack MC,Marks JC,Bell SL,Miller SN,Schwartz E,Dijkstra P,Koch BJ,Stone BW,Purcell AM,Blazewicz SJ,Hofmockel KS,Pett-Ridge J,Hungate BA,2021. The temperature sensitivity of soil: microbial biodiversity,growth,and carbon mineralization. The ISME Journal,15,2738-2747.
[14] Wang C #,Qu,LR#,Yang,LM,Morrissey,E,Miao RH,Liu ZP,Wang QK,Fang YT,Bai E*. 2021. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology,27,2039-2048.
[15] Li J,Sang CP,Yang JY,Qu LR,Xia ZW,Sun H,Jiang P,Wang XG,He HB, Wang C.*,2021. Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition. Soil Biology and Biochemistry,156,108207.
[16] Sun LF,Wang C*, Yu HM,Liu DW,Houlton BZ,Wang SF,Zeng XF*,Bai E,Fang YT,Jia YF. 2021. Biotic and abiotic controls on dinitrogen production in coastal sediments. Global Biogeochemical Cycles,35,e2021GB007069.
[17] Sang CP,Xia ZW*,Sun LF,Sun H,Jiang P,Wang C *,Bai E,2021. Responses of soil microbial communities to freeze–thaw cycles in a Chinese temperate forest. Ecological Processes,10: 66.
[18] Dai W,Peng B,Liu J, Wang C, Wang X,Jiang P,Bai E,2021. Four years of litter input manipulation changes soil microbial characteristics in a temperate mixed forest. Biogeochemistry,154,371-383.
[19] Wang X,Dai W,Filley TR,Wang C,Bai E,2021. Aboveground litter addition for five years changes the chemical composition of soil organic matter in a temperate deciduous forest. Soil Biology and Biochemistry,161,108381.
[20] Fan X,Gao D,Zhao C,Wang C,Qu Y,Zhang J,Bai E*,2021. Improved model simulation of soil carbon cycling by representing microbial-derived organic carbon pool. The ISME Journal,15,2248-2263.
[21] Wang X,Wang C *,Cotrufo MF,Sun L,Jiang P,Liu Z,Bai E*,2020. Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover. Global Change Biology,26,5277-5289.
[22] Wang C,Wang X,Pei GT,Xia ZW,Peng B,Sun LF,Wang J,Gao DC,Chen SD,Liu DW,Dai WW,Jiang P,Fang YT,Liang C,Wu NP,Bai E*,2020. Stabilization of microbial residues in soil organic matter after two years of decomposition. Soil Biology and Biochemistry,141,107687.
[23] Qu LR,Wang C *,Bai E*,2020. Evaluation of the 18O-H2O incubation method for measurement of soil microbial carbon use efficiency. Soil Biology and Biochemistry,145,107802.
[24] Xia ZW,Yang JY,Sang CP,Wang X,Sun LF,Jiang P,Wang C*,Bai E,2020. Phosphorus reduces negative effects of nitrogen addition on soil microbial communities and functions. Microorganisms,8,1828.
[25] Chang Q,Qu G,Xu W,Wang C,Cheng W,Bai E*,2020. Light availability controls rhizosphere priming effect of temperate forest trees. Soil Biology and Biochemistry,148,107895.
[26] Pei GT,Liu J,Peng B,Wang C,Jiang P,Bai E*,2020. Non-linear coupling of carbon and nitrogen release during litter decomposition and its responses to nitrogen addition. Journal of Geophysical Research: Biogeosciences,125,e2019JG005462.
[27] Houlton BZ*,Almaraz M,Aneja V,Austin AT,Bai E,Cassman KG,Compton JE,Davidson EA,Erisman JW,Galloway JN,Gu BJ,Yao G,Martinelli,LA,Scow K,Schlesinger WH,Tomich TP,Wang C,Zhang X,2019. A World of Cobenefits: Solving the Global Nitrogen Challenge. Earth's Future,7,865-872.
[28] Hou JF,Dijkstra FA,Zhang XW,Wang C,L XT,Wang P,Han XG,and Cheng WX*,2019. Aridity thresholds of soil microbial metabolic indices along a 3,200 km transect across arid and semi-arid regions in Northern China,Peer J,7,e6712.
[29] Sun LF,Sang CP,Wang C,Fan ZZ,Peng B,Jiang P,and Xia ZW*,2019. N2O production in the organic and mineral horizons of soil had different responses to increasing temperature,Journal of Soils and Sediments,19,3499-3511.
[30] Sun LF,Xia ZW,Sang CP,Wang X,Peng B,Wang C,Zhang J,M ller C,Bai E,2019. Soil resource status affects the responses of nitrogen processes to changes in temperature and moisture. Biology and Fertility of Soils,55,629-641.
[31]Pei GT,Liu J,Peng B,Gao DC,Wang C,Dai WW,Jiang P,and Bai E*,2019. Nitrogen,lignin,C/N as important regulators of gross nitrogen release and immobilization during litter decomposition in a temperate forest ecosystem,Forest Ecology and Management,440,61-69.
[32] Peng B,Sun JF,Liu J,Dai WW,Sun LF,Pei GT,Gao DC,Wang C,Jiang P,Bai E*,2019. N2O emission from a temperate forest soil during the freeze-thaw period: A mesocosm study. Science of The Total Environment,648,350-357.
[33] Feng J,Wei K,Chen Z,L XT,Tian JH,Wang C,and Chen LJ*,2019. Coupling and decoupling of soil carbon and nutrient cycles across an aridity gradient in the drylands of northern China: evidence from ecoenzymatic stoichiometry,Global Biogeochemical Cycles,33,559-569.
[34] Wang C,Houlton BZ,Liu DW,Hou JF,Cheng WX,Bai E*,2018a. Stable isotopic constraints on global soil organic carbon turnover. Biogeosciences,15,987-995.
[35] Wang C#,Liu DW#,Bai E*,2018b. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology and Biochemistry,120,126-133.